The lipid peroxidation product 4-hydroxy-2-nonenal induces tissue factor decryption via ROS generation and the thioredoxin system.
نویسندگان
چکیده
Many pathophysiologic agents transform cryptic tissue factor (TF) on cells to prothrombotic TF, and one such stimulus is 4-hydroxy-2-nonenal (HNE), the most abundant aldehyde produced by the oxidation of ω-6 polyunsaturated fatty acids. HNE was shown to induce reactive oxygen species (ROS) generation and p38 MAPK activation, but the link between them and their role in TF decryption are unclear. The present study was carried out to elucidate potential mechanisms involved in HNE-induced TF decryption in monocytic cells. The data presented herein show that mitochondria are the primary source for HNE-induced ROS generation. The inhibition of mitochondrial electron transport chain complex III and V blocked HNE-induced ROS generation, but not p38 MAPK activation. These inhibitors reduced phosphatidylserine (PS) externalization and TF decryption significantly, but not completely. HNE treatment inhibited the activities of thioredoxin reductase (TrxR) and thioredoxin (Trx), independent of ROS. Inhibition of the TrxR/Trx system by HNE or pharmacological inhibitors induced p38 MAPK activation, PS externalization, and TF decryption. Additional studies revealed that the inhibition of TrxR/Trx led to activation of apoptosis signal-regulating kinase (ASK-1) and mitogen-activated protein kinase kinase 3/6. Inhibition of ASK-1 expression by small interfering RNA or its activity by pharmacological inhibitors diminished HNE-induced TF decryption. Overall, our data suggest that HNE induces TF decryption by 2 distinctive pathways. One is ROS dependent but independent of p38 MAPK activation, and the other is via TrxR/Trx and is p38 MAPK activation dependent. However, both mechanisms result in the enhancement of PS at the outer leaflet that is responsible for TF decryption.
منابع مشابه
Cyclophosphamide-Induced Lipid Peroxidation and Changes in Cholesterol Content: Protective Role of Reduced Glutathione
The study was designed with an aim to evaluate the protective effects of reduced glutathione on cyclophosphamide induced lipid peroxidation and also changes in cholesterol content. Goat liver and white New Zealand rabbit were used as lipid source for the models. Lipid peroxidation study was performed by measuring the malondial...
متن کاملThe "Two-Faced" Effects of Reactive Oxygen Species and the Lipid Peroxidation Product 4-Hydroxynonenal in the Hallmarks of Cancer
Reacytive Oxygen Species (ROS) have long been considered to be involved in the initiation, progression and metastasis of cancer. However, accumulating evidence points to the benefical role of ROS. Moreover, ROS production, leading to apoptosis, is the mechanism by which many chemotherapeutic agents can act. Beside direct actions, ROS elicit lipid peroxidation, leading to the production of 4-hyd...
متن کاملPossible involvement of transient receptor potential channels in electrophile-induced insulin secretion from RINm5F cells.
Endogenously produced reactive oxygen species reportedly stimulate insulin secretion from islet β-cells. However, the molecular machinery that governs the oxidant-induced insulin secretion has yet to be determined. The present study demonstrates, using rat islet β-cell-derived RINm5F cells, the involvement of the transient receptor potential (TRP) cation channels in the insulin secretion induce...
متن کاملGentamicin induced lipid peroxidation and its control with ascorbic acid.
Lipid peroxidation is the oxidative deterioration of polyunsaturated fatty acids (PUFAs), which is a free radical related process. Studies showed that reactive oxygen species (ROS) are involved in a diversity of biological phenomena including atherosclerosis, neurodegenerative diseases, carcinogenesis etc. ROS and other pro-oxidant agents have the capacity to exhibit oxidative decomposition of ...
متن کاملElevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment.
Oxidative damage is a feature of many age-related neurodegenerative diseases, including Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of the free radical-mediated lipid peroxidation of unsaturated lipids, particularly arachidonic acid, in cellular membranes. In the present study we show for the first time in brain obtained at short postmortem intervals that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood advances
دوره 1 25 شماره
صفحات -
تاریخ انتشار 2017